

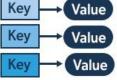
Introduction to NoSQL Databases and PySpark

DR. RAHMAD KURNIAWAN, ST., MIT., (MTA., CISDV.)

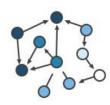
- Understand the basics of NoSQL databases by interacting with a simple MongoDB instance.
- Get hands-on experience with distributed computing by running basic operations using PySpark in Python.

Outline

- What are NoSQL Databases?
- Types of NoSQL Databases
- *Key Features of NoSQL
- **❖Introduction to PySpark**
- Why Use NoSQL with PySpark?
- Practical Applications

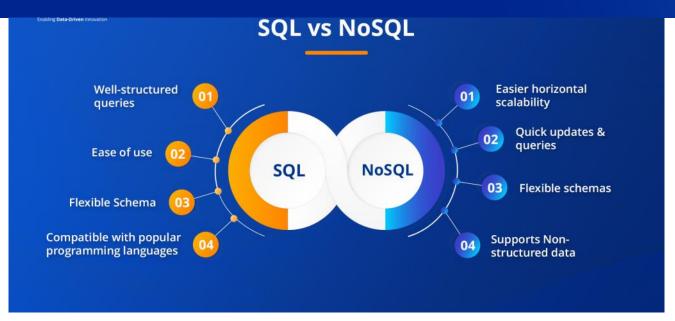

What are NoSQL Databases?

* What is NoSQL?


- NoSQL stands for "Not Only SQL"
- A NoSQL database provides a mechanism for storage and retrieval of data that is modeled differently from relational databases
- NoSQL databases are used for handling large amounts of unstructured, semistructured, or structured data

NoSQL

Column-Family


Document

SQL vs NoSQL SQL Relational Database Management System (RDBMS) Key Va

Differences between SQL and NoSQL

Feature	SQL Databases	NoSQL Databases
Data Model	Relational (tables)	Non-relational (document, key-value, graph, etc.)
Schema	Predefined schema	Dynamic schema
Scalability	Vertical scaling	Horizontal scaling
Use Case	Structured data	Unstructured, dynamic data
ACID Compliance	Strict	Eventual consistency

Types of NoSQL Databases

- Document-Oriented Databases (e.g., MongoDB)
 - Stores data as documents, typically in JSON or BSON format
- *Key-Value Databases (e.g., Redis, DynamoDB)
 - Stores data as a collection of key-value pairs
- Column-Oriented Databases (e.g., Cassandra)
 - Organizes data in columns rather than rows
- Graph Databases (e.g., Neo4j)
 - Focuses on relationships between data nodes

Key Features of NoSQL Databases

⋄ Scalability

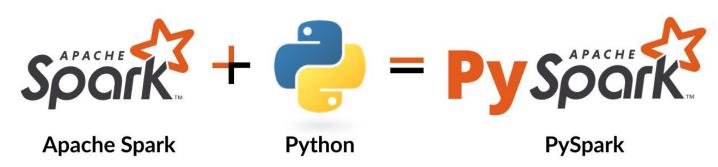
 Horizontally scalable, handling large-scale data across multiple servers.

*Flexibility

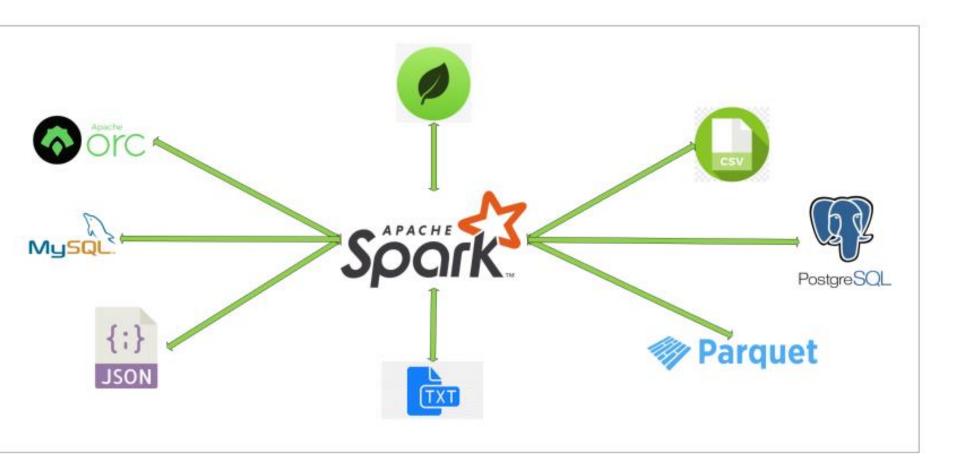
 No fixed schema, allowing more flexibility with data types and structure.

*High Performance

Optimized for big data and high-velocity data.


Distributed Architecture

 Data can be spread across multiple locations for better reliability and performance.


Introduction to PySpark

*What is PySpark?

- PySpark is the Python API for Apache Spark, a powerful distributed computing framework.
- It allows the processing of big data in a distributed fashion using the Spark engine.
- PySpark can handle large-scale data processing tasks that are too big for traditional systems.

Key Features of PySpark

❖In-Memory Computing:

Data is cached in memory for faster processing.

❖ Fault Tolerance:

 Automatically handles node failures with its Resilient Distributed Datasets (RDD).

Distributed Processing:

 Works across a cluster of machines for better efficiency.

***Flexible APIs:**

 Supports multiple languages including Python, Java, Scala, and R.

Why Use NoSQL with PySpark?

* Handling Unstructured Data:

 NoSQL is great for unstructured data, which PySpark can process at scale.

Scalability:

 Both NoSQL and PySpark are highly scalable, making them ideal for distributed big data systems.

Real-Time Processing:

 PySpark allows for real-time data streaming and batch processing of NoSQL data.

*** Integration:**

 PySpark integrates well with NoSQL databases like MongoDB and Cassandra.

Example Architecture

Data Ingestion:

 Data is ingested from various sources (e.g., IoT devices, social media, logs).

NoSQL Database:

 Stores data in a distributed, flexible, and scalable NoSQL database (e.g., MongoDB).

❖PySpark Processing:

 Data is processed in real-time or batch mode using PySpark for analytics.

***Visualization:**

 Processed data is visualized or sent to other systems for decision-making.

Practical Applications

❖Social Media Analytics

 Using NoSQL databases for storing and analyzing social media data with PySpark.

***IoT Data Processing**

 Handling large streams of IoT data using NoSQL databases and PySpark for real-time analytics.

Recommendation Systems

 Building real-time recommendation engines using PySpark and NoSQL databases like Cassandra.

♦ Thank you